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Year 1 Annual Progress Report
Proposal Title: A novel phosphatase gene on 10923, MINPP, in hereditary and sporadic
breast cancer (DAMD17-00-1-0390)
PI: Charis Eng, MD, PhD

INTRODUCTION

PTEN is a tumor suppressor gene on 10923 and encodes a dual specificity phosphatase.
One of the major substrates for PTEN is phosphotidylinositol (3,4,5) triphosphate in the
PI3 kinase pathway. Downstream of this pathway lies Akt/PKB, a known cell survival
factor. When PTEN is functional and abundant, Akt is hypophosphorylated and hence,
pro-apoptotic. Conversely, when PTEN is dysfunctional or absent, P-Akt is high and
hence, anti-apoptotic. PTEN is a major susceptibility gene for Cowden syndrome (CS), a
hereditary disorder with a high risk of breast and thyroid cancer, and appears to be
involved in a broad range of tumors. In addition, germline PTENmutations have been
found in a developmental disorder, Bannayan-Riley-Ruvalcaba syndrome (BRR) as well.
This is an autosomal dominant disorder characterised by macrocephaly, lipomatosis,
hemangiomatosis and speckled penis. Previously not thought to be associated with
cancer risk, BRR families and cases with germline PTEN mutations have recently been
shown to be at risk for cancers and especially breast tumors. Between 10-80% (mean
60%) of CS families and 60% of BRR individuals have germline PTEN mutations.
Families that do not have germline PTEN mutations are not inconsistent with linkage to
the 10q22-23 region. While breast cancer is a major component of CS and 30-50% of
sporadic tumors carry hemizygous deletion in the 10q22-23 region, no or rare sporadic
breast carcinomas have somatic intragenic PTEN mutations. A gene encoding a novel
inositol polyphosphate phosphatase, MINPP, with overlapping function with PTEN, has
been mapped to 10q23. We hypothesise that MINPP will be the susceptibility gene for
the remainder of CS and BRR families and might likely be the major tumor suppressor
gene on 10q23 which plays a role in the pathogenesis of sporadic breast carcinomas. We
hope to explore whether MINPP is another CS and BRR susceptibility gene by looking
for germline mutations in cases without germline PTEN mutations. We will also perform
mutation and fine structure deletion analysis of MINPP in sporadic breast carcinomas.
And finally, to prove that MINPP is a tumor suppressor and to begin to explore its
relationship with PTEN in breast carcinogenesis, we will perform stable transfection
experiments into two breast cancer lines with known genomic PTEN status (one PTEN
wildtype and one PTEN null) as well as known PTEN protein and P-Akt levels. We will
especially determine if MINPP is growth suppressive like PTEN, and determine if growth
suppression is mediated by G1 arrest and/or apoptosis. Towards these ends, our specific
aims were:

1. To determine if germline mutations of MINPP cause PTEN mutation negative CS,
BRR and CS-like families.

2. To determine if somatic MINPP mutations and deletions are associated with sporadic
breast carcinomas.

3. To determine if MINPP affects Akt activity and causes G1 arrest and/or cell death in
breast cancer cell lines.




BODY

Task 1: Mutation analysis of MINPP in germline PTEN mutation negative CS, BRR
and CS-like Cases

Fourteen unrelated CS probands, 22 unrelated BRR probands and 20 unrelated CS-like
probands known not to harbor germline PTEN mutations have thus far been ascertained.
CS and BRR were diagnosed stringently by the criteria of the International Cowden
Consortium (1) and as documented previously (2), respectively. The criteria for the
diagnosis of a CS-like individual or family is as previously described (3). Preliminary
mutation analysis of all exons, exon-intron junctions and flanking intronic sequences of
MINPPI have been performed on these subjects. Among a total of 56 subjects, no
germline MINPPI mutations were found (4) (Eng, unpublished). Please see appended
reprint for further details.

We are continuing to accrue germline PTEN mutation negative, CS, BRR and CS-like
probands for MINPP analysis. In addition, we are also examining PTEN mutation
negative, MINPP Imutation negative probands for mutations in genes in the 10q22-24
interval.

Task 2: Mutation and deletion analysis of MINPP in sporadic primary human
breast carcinomas

To further understand the role of MINPP in sporadic counterparts of CS component
cancers, we are accruing two series of sporadic tumors, primary adenocarcinomas of the
breast and primary follicular thyroid neoplasias. Currently, we have accrued 50 breast
cancers and have examined the first 10 for somatic MINPP mutations. To date, no
obvious pathogenic mutations have been found but N=10 is a small subset of the entire
series. Accrual of breast tumors and MINPP mutation analysis continues.

We then turned to examining the sporadic counterpart of common CS component
neoplasias, namely, sporadic follicular thyroid adenomas (FA) and follicular thyroid
carcinomas (FTC). We analyzed DNA from tumor and corresponding normal tissue from
23 patients with FA and 15 patients with FTC for LOH and mutations at the MINPPI
locus. LOH was identified in 4 malignant and 3 benign tumors. One of these FTC’s with
LOH was found to harbor a somatic ¢.122C>T or S41L mutation. We also found two
germline sequence variants, ¢.809A>G (Q270R) and IVS3+34T>A. The ¢.809A>G
variant was only found in one patient with FA but not in patients with FTC or normal
controls. More interestingly, IVS3+34T>A was found in about 15% of FA cases and
normal controls but not in patients with FTC. These results suggest a role for MINPP1 in
the pathogenesis of at least a subset of malignant follicular thyroid tumors, and that
MINPP] might act as a low penetrance predisposition allele for FTC. See appended
reprint for details :




Task 3: Functional studies of MINPP in PTEN+/+ and PTEN null breast cancer cell
lines

MINPPI cDNA constructs are being made in pCR2.1 and in the mammalian expression
system pUHD10-3 which contains a tetracycline-suppressible (Tet-off) promoter, as
previously described for PTEN expression constructs (5).

KEY RESEARCH ACCOMPLISHMENTS

e Germline MINPPI mutations likely do not account for a large proportion of germline
PTEN mutation negative CS, BRR and CS-like probands, although accrual is not
sufficient to draw any conclusions at this time.

e Somatic MINPP] alterations play some role in the genesis of sporadic follicular
thyroid neoplasias.

e Germline MINPP] variation may be considered low penetrance alleles for
predisposition to FTC.

REPORTABLE OUTCOMES

Dahia PLM, Gimm O, Chi H, Marsh DJ, Reynolds PR, Eng C. Absence of germline
mutations in MINPPI, a phosphatase-encoding gene centromeric of PTEN, in patients
with Cowden and Bannayan-Riley-Ruvalcaba syndrome without germline PTEN
mutations. J Med Genet 2000; 37:715-7.

Gimm O, Chi H, Dahia PLM, Perren A, Hinze R, Komminoth P, Dralle H, Reynolds PR,
Eng C. Somatic mutation and germline variants of MINPP1, a phosphatase gene located
in proximity to PTEN on 10¢23.3, in follicular thyroid carcinomas. J Clin Endocrinol
Metab 2001; 86:1801-5.

CONCLUSIONS

The first year of work exploring MINPP as an alternative phosphatase in playing a role in
the etiology and pathogenesis of CS and sporadic tumors remain inconclusive for reasons
of sample size. Our work to date has shown that germline mutations in MINPPI do not
account for the majority of germline PTEN mutation negative CS, BRR and CS-like
probands. However, sample size for each category is too small to draw any conclusions
at present whether germline MINPPI mutations play any role in these syndromes. As
originally proposed, accrual of further PTEN mutation negative CS, BRR and CS-like
individuals continues. Similarly, the somatic analysis of MINPPI in sporadic breast
carcinomas is still in its infancy with a sample size tested to date of 10. Further samples
are being accrued for MINPP] analysis. We have shown that somatic MINPP]
alterations does play a role in the pathogenesis of sporadic FA and FTC. Further, we
have some evidence that MINPP] might serve as a common low penetrance gene for
susceptibility to isolated FTC.
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of LDLR as FH causing, as they appear to have a modest
effect on LDL receptor function.
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Absence of germline mutations in
MINPPI, a phosphatase encoding gene
centromeric of PTEN, in patients with
Cowden and Bannayan-Riley-
Ruvalcaba syndrome without germllne
PTEN mutations

Ebprror—Germline mutations in the dual specificity phos-
phatase gene PTEN (also known as MMAC! or TEPI)
have been associated with susceptibility to two related
hamartomatous disorders, Cowden syndrome (CS, MIM
158350) and Bannayan-Riley-Ruvaicaba syndrome (BRR,
MIM 153480).' > It has recently been established that
PTEN functions as a 3-phosphatase towards phospholipid
substrates in the phosphatidylinositol 3-kinase (PI-3
kinase) pathway.’ Lack of PTEN results in the accumula-
tion of phosphatidylinositol-(3,4,5)-P,, which is required
for activation of protein kinase B (PKB)/Akt, a downstream
target of PI3-kinase and a known cell survival factor.**
While up to 81% of CS and approximately 60% of BRR
cases have detectable PTEN germiine mutations, no
mutations in the coding region or exon-intron boundaries of
PTEN have been found in the remaining affected
subjects.” *** Informative PTEN mutation negative families
have been shown to be linked to the 10923 region, where
PTEN lies,” " although recently there has been a report of
two CS families in which linkage to 10q23 has been
excluded.” This has raised the possibility that either a regu-

J Med Gener 2000;37:715-717

latory region of the PTEN gene not included in previous
studies, such as the promoter region, or another, closely
located gene might be responsible for the CS and BRR cases
in which no PTEN mutation has been found. The first alter-
native is unlikely to represent the majority of such cases, as
no evidence of PTEN transcriptional silencing has been
detected in the tissue of affected CS subjects in which no
PTEN mutation was identified (Dahia and Eng, unpub-
lished observations). Transcription levels of PTEN were
found to be similar in affected and unaffected tissues of at
least three unrelated CS patients and were equivalent to
those of normal subjects. This suggests that methylation of
the promoter or mutation within the promoter affecting
transcription of PTEN does not occur in at least a subset of
these PTEN mutation negative CS and BRR cases. To inves-
tigate the possibility that a closely mapped gene was the tar-
get of such mutations, we examined the coding region of a
recently identified gene mapping to 1023, next to
D10S579, a marker estimated to lie no more than 1 Mb
centromeric of PTEN." The multiple inositol polyphosphate
phosphatase, known as MINPP! or MIPP, has been cloned
and shown to encode a conserved domain common to histi-
dine phosphatases.'” '* MINPP! codes for an approximately
52 kDa enzyme with the ability to remove the 3-phosphate
from inositol phosphate substrates, such as Ins (1,3, 4,5)P,,
as well as other inositol moieties. It has been shown that
human MINPP! has a wide tissue distribution pattern and
its subcellular localisation appears to be targeted to the
endoplasmic reticulum (ER)."* '* While little is known about
the human MINPP! function, its most well studied
homologue, chick HiPER1, has a more restricted tissue dis-
tribution and appears to be critical to regulate the transition

weote. ymedgenet.com
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Table | Primer sequences and annealing temperature used in PCRs of the MINPPI gene

Letters

Auncaling remperarure

MINPP! cxon  Forevard sequence Reverse sequence used for PCR

1-A MINPP1 5'UTRF MINPP1-296R 54
CTCCACTGACCGTCCCGA ATCTGTTTGACCGTGGGGTA

1-B MINPP!-145F MINPPI1-556R 54
ACCAAGACTCGCTACGAGGA GTGCTTGGAACTGGTGATGA

1-C MINPPI-535F MINPPI-I-1R: 61
CTCATCACCAGTTCCAAGCA AGGACCGGGACAGCACAC

) MINPP1-I-2F: MINPP1-I-2R: 54
CGGCTGTGCGGATTAGTAAG TCCTTATGTTTTCATTTTCACAGTTC

3 MINPP1-I-3F: MINPP!-I-3R: 54
TCCCCAAACTGAAGATGTCC AACCAAATGCAAACAAGCAA

4 MINPP1-[-4F: MINPPI-I-4R: 54
TCAGGGAATCTTGTTATATTTTTGAA TGGGTAGAGTGGAAGGTTCG

6% MINPP1-1093F MINPP1-1464R 54
ATCCTCCAGTTTGGTCATGC TCATAGTTCATCAGATGTACTGTT
or
GTCTCAGCCAATTTCTTCTC

*In the chick MINPP! homologue, HiPER!1, an extra exon, dubbed exon 5. and not seen in humans. precedes the final exon, named therefore exon 6.

of growth plate chondrocytes from proliferation to
hypertrophy.'” It is presumed that human MINPP! plays a
role in differentiation and apoptosis, although details on the
pathways involved in such signalling are as yet unknown.
Thus, owing to its chromosomal location and to the fact that,
like PTEN, it encodes a phosphatase with actvity towards
lipid substrates, Wwe sought to investigate whether mutations
in MINPP! would account for cases of CS and BRR without
detectable PTEN mutations.

We obtained DNA from 36 subjects who met stringent
criteria for the diagnosis of CS (n=14) and BRR (n=22
and in whom no PTEN mutation had been detected."” "’ In
at least one of the families, linkage data were compatible
with linkage of the CS phenotype with the 10q23 region."
The rest of the cases were isolated or belonged to small
families where linkage analysis was impossible. Informed
consent was obtained from all subjects enrolled in this
study, according to institutional Human Subjects Protec-
tion Committee protocols. All samples were screened for
mutations in the coding region of MINPP! and most
intron-exon boundaries of the gene by PCR based (primer
sequences and PCR conditions in table 1) direct sequence
analysis, as previously described.'® No MINPP! mutations
were found in germline DNA from any of the subjects
examined in the present study. In particular, no mutations
were found at the highly conserved histidine phosphatase
motif, RHGxRxP, which defines members of the histidine
acid phosphatase family. In addition, a second highly
conserved site in this group of phosphatases comprising a
histidine residue located at position 370 was found to be
intact in all samples examined. This represents a proton
donor site at the carboxy-terminal region of the protein
which appears to be critical for full catalvtic activity of this
group of enzymes." '* We identified five variations from the
reference MINPP! sequence from the database in all sam-
ples, as well as in three normal controls (GenBank accession
number AF046914). All of these sequence variants were
identical to the reference MINPP2 sequence (GenBank
accession number AF084943). A sixth variant, c.444A—G,
was noted in all our sequences which is in agreement with
the MINPP] reference sequence, but at odds with that of
MINPP2. It is likely, therefore, that these variations might
represent errors in sequence entry on the database, rather
than being associated with any particular phenotype, as they
were identical in all samples, including the normal controls.

While described as independent hamartoma syndromes
with shared clinical features until recently, it has been gen-
erally accepted that only CS bears a higher susceptibility to
malignancies.' * A broad analysis of genotvpe-phenotype
data in the largest series of both CS and BRR recently
undertaken in our laboratory has suggested that they might
in fact represent distinct spectra of the same primary

disorder."” These findings have clear implications for the
follow up of affected subjects, in which systematic cancer
surveillance is now recommended for both disorders, and
not only for patients with CS.

In several human malignancies, such as breast, prostate,
and thyroid cancer with loss of heterozygosity of 10q and in
which no PTEN mutations have been found, it has been
suggested that a region proximal to PTEN might be the main
target in the rumorigenesis pathway." **' It remains to be
determined whether somatic abnormalities of MINPP!
might be related to any of these sporadic tumours.

In conclusion, we have excluded an important candidate
gene as the primary genetic abnormality underlying CS and
BRR in subjects without identifiable PTEN mutation. It is
possible that some degree of genetic heterogeneity exists, as
suggested by a study that has excluded linkage to 1023 in
two PTEN mutation negative CS families. The major
genetic defect responsible for CS and BRR in cases without
detectable PTEN mutation still remains to be established.
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Mosaicism in Alport syndrome and
genetic counselling

EpiTor—Alport syndrome is characterised by a progres-
sive glomerulonephritis with typical ultrastructural
changes in the glomerular basement membrane. The most
frequent, semidominant, X linked type is the result of a
variety of mutations (either point mutations or intragenic
deletions) of the COL4A4S5 gene encoding the u5 chain of
tvpe IV collagen.'

During SSCP scanning of the COL4A4S5 gene, a shift in
a segment including exon 44 and flanking intronic
sequences was found in a 19 year old proband showing
tvpical ultrastructural changes of the glomerular basement
membrane (IIL.3 in fig 1). Sequence analysis showed a
G—C transversion in the 5' splice site of intron 44 (posi-
tion 4271+1). The mutation iutroduced an Alul restric-
tion site which divided a 66 bp fragment into two
fragments of 39 + 27 bp. All 18 family members were
tested using this restriction assay and the mutation was
found in the proband’s affected brother, his cousin, his
mother, and two maternal aunts. Surprisingly, the
proband’s grandmother was a normal homozygote. The
proband’s grandfather was dead, but true paternity of all
daughters could be (indirectly) ascertained by polymor-
phic markers.*

In this family the mutation is associated with juvenile
Alport syndrome in males, suggesting that the splicing
defect results in a low level or absence of the protein, in
agreement with our previous findings on genotype-
phenotype correlations.' Interestingly, we noted consider-
able clinical variability among heterozygous females (n=4),

¥ Med Gener 2000;37:717-719

ranging from ESRD at 27 years to absence of microscopic
haematuria at 37 years.

Our data strongly suggest mosaicism in the germ cells of
either grandparent. Mosaicism in germ cells may be the
result of either a mutation in a germ cell that thereafter
undergoes mitotic divisions (giving rise to mosaicism con-
fined to germ cells), or an early postzygotic mutation
before separation of the somatic/germ cells (giving rise to
mosaicism in both the tissues and germline). In the latter
case, the phenotype may or may not be expressed in the
mosaic subjects, depending on the proportion of mutated
cells in the relevant tissues. In order to verify mosaicism in
somatic tissues of the living grandmother (I.1 in fig 1), we
used Amplification Refractory Mutation System (ARMS-
PCR), a tool able to detect known mutations even when
present in a low fraction of template molecules.” The
primer sense for exon 44' was used in combination with
the following specific antisense primers: normal (3'-
GGTATAACTATCTTCAGGAATAAGTCTTAC-3") and
mutant (5- GGTATAACTATCTTCAGGAATAAGTCT
TAG-3"). We performed ARMS-PCR on DNA extracted
from grandmaternal peripheral blood using progressively
lower stringency by lowering the temperature or increasing
the PCR cycle number or both, with the aim of reaching a
condition where even the very few mutated molecules
present in the blood sample would be amplified. This condi-
tion was never reached, as the grandmother’s DNA always
gave the same results as normal homozygous female controls

(data not shown). .
On analysis of Xq22 DNA polymorphisms, the three

-carrier females in the second generation were homozygous

for one of the maternal haplotypes, which therefore must
have been present in the dead grandfather as well, while the
single non-carrier female and the unaffected male carried
the other maternal haplotype. These data might suggest that
the muration was present in the grandmaternal gonads on
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ABSTRACT

Various genes have been identified to play a role in the pathogen-
esis of follicular thyroid tumors. Cowden syndrome is the only known
familial syndrome with an increased risk of both follicular thyroid
adenoma (FA) and carcinoma (FTC). Germline mutations in the tu-
mor suppressor gene PTEN, which encodes a dual-specificity phos-
phatase, have been found in up to 80% of patients with Cowden
syndrome suggesting a role of PTEN in the pathogenesis of follicular
thyroid tumors. Although somatic intragenic mutations in PTEN,
which maps to 10g23.3, are rarely found in follicular tumors, loss of
heterozygosity (LOH) of markers within 10q22-24 occurs in about
25%. Recently, another phosphatase gene, MINPPI, has been local-
ized to 10923.3. MINPP1 has the ability to remove 3-phosphate from
inositol phosphate substrates, a function that overlaps that of PTEN.
Because of this overlapping function with PTEN and the physical
location of MINPP1 to a region with frequent LOH in follicular thyroid

tumors, we considered it to be an excellent candidate gene that could
contribute to the pathogenesis of follicular thyroid tumors. We ana-
lyzed DNA from tumor and corresponding normal tissue from 23
patients with FA and 15 patients with FTC for LOH and mutations
at the MINPP] locus. LOH was identified in four malignant and three
benign tumors. One of these FTCs with LOH was found to harbor a
somatic ¢.122C > T or S41L mutation. We also found two germline
sequence variants, c.809A > G (Q270R) and IVS3 + 34T > A. The
¢.809A > G variant was found in only one patient with FA but not in
patients with FTC or normal controls. More interestingly, IVS3 +
34T > A was found in about 15% of FA cases and normal controls but
not in patients with FTC. These results suggest a role for MINPP1 in
the pathogenesis of at least a subset of malignant follicular thyroid
tumors, and MINPP] might act as a low penetrance predisposition
allele for FTC. (J Clin Endocrinol Metab 86: 1801-1805, 2001)

OLLICULAR THYROID TUMORS are a common find-
ing in iodine-deficient areas. By far, the most common
tumors are benign follicular thyroid adenomas; only a mi-
nority of the tumors are carcinomas. Until today, it is un-
known whether an adenoma-carcinoma sequence exists.
Data supporting both theories exist (1-3).

The only known familial syndrome with an increased risk
of both benign and malignant follicular thyroid tumors is
Cowden syndrome (4). Germline mutations of PTEN, en-
coding a dual-specificity phosphatase, are found in up to 80%
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of patients with Cowden syndrome (5, 6), 60% of patients
with Bannayan-Riley-Ruvalcaba syndrome (7), and an un-
known proportion of patients with a Proteus-like syndrome
(8). Although somatic intragenic PTEN mutations are found
in only a minority of sporadic follicular thyroid carcinomas
(9,10), loss of heterozygosity (LOH) of markers within 10q23,
especially including marker D10S579, has been found in up
to 25% of either benign or malignant follicular tumors (9-11).
In another study, fine structure deletion analysis of 10q22-24
demonstrated regions of loss that suggest that follicular ad-
enomas and carcinomas develop along distinct parallel neo-
plastic pathways (11).

A new gene, MINPP1 (multiple inositol polyphosphate
phosphatase), has recently been localized to 10g23.3 in close
proximity to marker D10S579 (12). MINPP1, also known as
MIPP, has been shown to encode a conserved domain com-
mon to histidine phosphatases (12, 13). This 52-kDa enzyme
has the ability to remove 3-phosphate from inositol phos-
phate substrates, such as Ins(1,3,4,5)P,, a function that over-
laps that of PTEN even though the sequence similarity of
PTEN and MINPP1 is only about 16%. MINPP1 is the only

1801



1802

enzyme known to hydrolyze the abundant metabolites ino-
sitol pentakisphosphate and inositol hexakisphosphate. Lit-
tle is known about human MINPP1. It has been shown,
however, to be expressed in a wide variety of tissues, in-
cluding the human thyroid (Gimm, O., and C. Eng, unpub-
lished data). Because of MINPP1’s overlapping function with
PTEN and its physical location within a region of LOH for
thyroid tumors, it is an excellent candidate gene that could
contribute to thyroid tumorigenesis.

Here, we report the results of mutation analysis of MINPP1
in benign and malignant follicular thyroid tumors from an
iodine-deficient area. Our data might tentatively suggest a
role of MINPP1 in the tumorigenesis of at least a subset of
malignant follicular thyroid tumors.

Materials and Methods
Patients and specimens

Paraffin blocks from 38 unselected benign (n = 23) and malignant
(n = 15) follicular thyroid tumors were ascertained from Germany and
Switzerland. Three malignant tumors were classified as Hiirthle cell
carcinoma. All samples were obtained with informed consent. In all 38
samples, tumor tissue and corresponding normal tissue (either normal
thyroid tissue from a different block or from an area not in proximity to
the tumor, or adjacent muscle tissue distant to the tumor site) were
available for extraction of paired somatic and “germline” genomic DNA.
DNA extraction following microdissection was performed using stan-
dard protocols (14).

Mutation analysis

PCR amplification using genomic DNA as template was carried out
in 1X PCR buffer (Perkin-Elmer Corp., Norwalk, CT) containing 200 um
dNTP (Life Technologies, Inc., Gaithersburg, MD), 1 uM of each primer
(see Table 1), 2.5U Taq polymerase (QIAGEN, Valencia, CA), 0.9 mm
MgCl,, 1X Q-buffer (QIAGEN), and 50-100 ng of tumor DNA template
ina 50 uL volume. PCR conditions were 35 cycles of 1 min at 95 C, 1 min

TABLE 1. MINPPI primer sequences and PCR-product sizes
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at 58 C, and 1 min at 72 C followed by 10 min at 72 C. All exons were
at least divided into two (a and b) because of their large sizes. Exon 1
had to be divided into three fragments (a—c).

Mutation analysis for exon 2 (fragments 2a and 2b), exon 3 (fragments
3aand 3b), and exon 6 (fragments 6a and 6b) was performed with DGGE.
Exon 1 and exon 4 of MINPP1 are very GC rich and therefore less suitable
for DGGE. Hence, mutation analysis for these two exons was performed
using SSCP (fragments 1b, 1c, 4a, and 4b). No optimal SSCP condition
could be found for the 5’ part of exon 1 (fragment 1a) and hence was
subjected to direct semiautomated sequence analysis as previously de-
scribed (5, 15, 16).

Before DGGE, 10 ul of the resulting PCR product were added to 1 ul
of Ficoll-based loading buffer. This mixture was loaded onto 10% poly-
acrylamide gels carrying a 15-65% urea-formamide gradient and a 2-9%
glycerol gradient in 0.5 X TAE. The amplicons were electrophoresed at
60 C and 105 V for 16 h. The fragments were visualized with ultraviolet
transillumination after staining with ethidium bromide solution (15 ul
in 500 ml dH,0) for 30 min.

Before SSCP, 2 ul of the resulting PCR product were added to 3 ul
of formamide buffer and then heated to 95 C for 10 min and subsequently
cooled on dry ice. Immediately before SSCP, the samples were quickly
thawed and then run through a 10% polyacrylamide/1 x TBE gel. Gels
were run either at 100 V for 14 h at room temperature (fragments 1b, 4a,
4b) or at 150 V for 16 h at 4 C (fragment 1c). Subsequent silver staining
was performed as previously described (17).

Although DGGE is 100% sensitive and specific in this and other
laboratory’s hands (18-20), SSCP is acknowledged not to have the same
high sensitivity and specificity (21). Routine quality control for both
SSCP and DGGE in our laboratory takes the form of subjecting a known
positive and known negative to electrophoresis along with the test
samples. Further, three random SSCP negative samples are subjected to
direct sequence analysis.

If variant DGGE/SSCP banding patterns were observed, the remain-
ing PCR aliquot was subjected to purification and semiautomated se-
quencing using the above primers and dye terminator technology (see
above). If sequencing revealed a variant, the corresponding germline
DNA was examined in the same manner to determine whether the
sequence variant is somatic or germline.

The frequencies of these sequence variants in patients with follicular
thyroid tumors and in a race-matched control group were determined

Fragment Primer name Primer sequence (5' to 3') PCR-product size

1-a MINPP1-10F CCGTCCCGACGATGCTAC 241
MINPP1-250R? CCGTCCCGACGATGCTAC

1-b MINPP1-189F* AACCCCGTGCTATTGTCG 300
MINPP1-488R” CTGTCGCATATCCTGCCG

1-¢ MINPP1-444F ATGGACGGGCAGCTAGTAGA 251
MINPP1-I-1R AGGACCGGGACAGCACAC

2-a MINPP1-I-2F CGGCTGTGCGGATTAGTAAG 292
MINPP1-GC-2aR? TCTGGTCCAGTTTTGAAGGC

2-b MINPP1-GC-2bF? TTGGACCTCCAACAGTTAATGA 304
MINPP1-I-2R TCCTTATGTTTTCATTTTCACAGTTC

3-a MINPP1-1-3F TCCCCAAACTGAAGATGTCC 244
MINPP1-GC-3aR® TCAAAAACATCACACCAAGGA

3-b MINPP1-GC-3bF® CTGTTCATTTGACCTGGCAAT 185
MINPP1-I-3R AACCAAATGCAAACAAGCAA

4-a MINPP1-I-4F TCAGGGAATCTTGTTATATTTTTGAA 177
MINPP1-1071R* CTGCTTTGTCCAAGTGCTGA

4-b MINPP1-1027F¢ GCTGCACCTTGTTTCAGGAT 251
MINPP1-I-4R TGGGTAGAGTGGAAGGTTCG

6-a° MINPP1-E6F GTCTCAGCCAATTTCTTCTC 294
MINPP1-GC-6aR? TTTCATTTAATAACATCTGCACTCG

6-b° MINPP1-GC-6bF? CACTGTGAAAATGCTAAGACTCC 298

MINPP1-1538R*

GCATGTAATCACTCATTGCAGA

“ The number refers to the number of the position of the 5’ end of the primer in the sequence available under accession number AF084943;
it is not equal to the nucleotide number within the translated coding region.
® These primers have in addition a GC-rich clamp (5’'-CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCG-3') on their 5 end in

order to perform DGGE mutation analysis.

¢ In the chick MINPP1 homolog, HiPER1, an extra exon, dubbed exon 5, and not seen in humans, precedes the final exon, named therefore

exon 6.
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using peripheral blood leukocyte DNA. This race-matched control
group consisted of patients who were admitted to the Department of
General Surgery, Halle, Germany, for nonthyroid-related diseases. In-
formed consent was given in all cases.

LOH analysis

For every germline-tumor pair, PCR reactions were carried out using
0.6 um each of forward and reverse primer in 1X PCR buffer (QIAGEN),
4.5 mm MgCl, (QIAGEN), 1X Q-buffer (QIAGEN), 2.5 U HotStarTaq
polymerase (QIAGEN), and 200 um ANTP (Life Technologies, Inc.) in a
final volume of 50 uL. Reactions were subjected to 35 cycles of 94 C for
1 min, 55-60 C for 1 min and 72 C for 1 min followed by 10 min at 72
C. LOH analysis for each germline-tumor pair was performed as pre-
viously described using markers flanking MINPP1, D10S541 (telomeric),
D1052491 (telomeric) (5, 22), and D10S1686 (centromeric) as well as the
marker D10S579 that lies in close proximity to MINPP1 (12). All forward
primers were 5'-labeled with either HEX or 6-FAM fluorescent dye
(Research Genetics, Inc., Huntsville, AL).

Statistical analysis

Differences in allele frequencies were calculated using the standard
Chi-square test. A P value less than 0.05 was considered significant.

Results

Mutation analysis of all 5 exons of MINPP1 from 38 fol-
licular thyroid tumors revealed variants in 3 exons (frag-
ments la, 2b, and 3b). Sequencing revealed one sequence
variant each (Table 2). Corresponding germline DNA was
examined for the presence of each of these variants.

We detected a sequence variant in one carcinoma,
¢.122C > T (541L), in the 5’ end of exon 1 (fragment 1a) (Fig.
1A). This variant was absent in the corresponding germline
(DNA from muscle) (Fig. 1B) and most likely represents a
somatic missense mutation. Repeat PCR and sequencing con-
firmed the variant and excluded PCR errors. Thus, somatic
S41L was found in 1 out of 15 carcinomas (7%).

The variants in exon 2 (fragment 2b), c.809A > G (Q270R)
(Fig. 1, C and D) and fragment 3b, IVS3 + 34T > A (Fig. 1,
F and G) were also present in the germline (data not shown).
The heterozygous c.809A > G variant was seen in a patient
with follicular thyroid adenoma and was never seen in pa-
tients with follicular thyroid carcinoma or in a race-matched
control group (Fig. 1E and Table 2a).

The germline IVS3 + 34T > A variant was underrepre-
sented in cases with follicular thyroid carcinoma (0%), com-

TABLE 2. Allele frequency of MINPP! polymorphic sequence
variants in patients with follicular thyroid adenoma and follicular
thyroid carcinoma and race-matched controls

(a) Exon 2
Codon Nucleotide FA FTC Controls
(amino acid)
270 ¢.809G (Arg) 1 0 0
270 ¢.809A (Gln) 45 30 78
FA vs. FTC, P = n.s.; FA vs. controls, P = n.s.
(b) Exon 3
Codon Nucleotide FA FTC Controls
(amino acid)
N/A IVS3+34A (N/A) 7 0 9
N/A IVS3+34T (N/A) 39 30 57

FTC vs. FA, P < 0.03; FTC vs. controls, P < 0.04. n.s., not signif-
icant; N/A, not applicable; FA, follicular thyroid adenoma; FTC, fol-
licular thyroid carcinoma.
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pared with those with adenoma (15%; P < 0.03, Table 2b) or
normal controls (14%; P < 0.04, Table 2b).

LOH analysis within 10q22-24 was performed for all
tumor-germline pairs. We found LOH in seven follicular
tumors, four carcinomas (27%), and three adenomas (13%).
None of the seven follicular adenomas with IVS3 + 34T > A
had LOH. Interestingly, the one carcinoma harboring the
somatic mutation S41L showed LOH at D10S579, and the
flanking markers D1052491 and D10S1686 were not
informative.

Discussion

In the present study, we detected a somatic S41L mutation
in MINPP1 together with loss of the corresponding wild-type
allele in one follicular thyroid carcinoma. We also found two
previously unreported germline sequence variants in
MINPPI; one, an intronic variant, is underrepresented in
cases with follicular thyroid carcinomas, compared with
those with follicular thyroid adenomas or normal controls.

The somatic mutation ¢.122C > T in tumor DNA from one
patient with follicular thyroid carcinoma changes serine, a
neutral and polar amino acid, at position 41, to leucine, which
is also neutral but hydrophobic. This region is highly con-
served among several species (human, rat, mouse) (12, 13).
Hence, one can speculate that this polar for hydrophobic
amino acid substitution changes the structure of MINPPI.
Postulating that MINPP1 might act as a tumor suppressor, its
functional activity might subsequently be lost or at least
decreased. However, functional analysis would be necessary
to confirm this premature hypothesis. Nonetheless, loss of
the corresponding wild-type allele in this sample lends cre-
dence that the somatic S41L mutation is pathogenic and both
MINPP1 alleles inactivated.

The finding of a rare germline sequence variant in one
patient with follicular thyroid adenoma is intriguing. This
variant was neither observed in 78 control alleles nor found
in 36 patients with Cowden syndrome or Bannayan-Riley-
Ruvalcaba syndrome (23). One may speculate that this vari-
ant, which leads to substitution of a neutral and polar amino
acid for a basic amino acid, affects the function of MINPP1.
Whether this hypothetical change of MINPP1 function plays
a role in the pathogenesis of follicular thyroid adenomas
must remain unresolved at this point. Histological appear-
ance did not show any unusual features. Also, there was no
family history of follicular thyroid adenomas, but no germ-
line DNA was available from any relative.

The absence of the relatively frequent intronic polymor-
phic sequence variant IVS3 + 34T > A in follicular thyroid
carcinoma patients is intriguing. Even though our numbers
are small, at least one or two follicular thyroid carcinomas
harboring this sequence variant should have been detected:
power calculations reveal that if only 10% of 30 alleles have
this variant, our power to detect this in at least one case
would exceed 0.92. We also screened 30 patients with breast
cancer for variation in MINPP1 and found about the same
frequency (12%) of this polymorphism as found in patients
with FA (15%) and controls (14%) (Gimm, O., and C. Eng,
unpublished data). Of note, this intronic polymorphism lies
on the border of a poly-T/poly-A/poly-T tract. There is some



1804

Ity

»

GIMM ET AL.

JCE & M « 2001
Vol. 86 » No. 4

e awn:

IVS3+34 WT WT  IVS3+34 WT
T>A T>A
T A A & Faaan > 7" T T T " A AXNAA S A% §
e
V83+34
T>A
3 5

WT

FiG6. 1. Sequence variants in MINPP] identified by DGGE and/or sequencing. A, Sequence variant ¢.122C > T (S41L) in one follicular thyroid
carcinoma. B, Absence of the sequence variant in the corresponding germline. C, DGGE reveals a variant in exon 2 (fragment 2b) in one follicular
adenoma. D, Sequencing identifies the variant ¢.809A > G (Q270R). E, Example for absence of the variant c.809A > G (Q270R) in blood from
one control patient. F, DGGE reveals a variant in exon 3 (fragment 3b) in follicular adenomas. G, Sequencing identifies the variant IVS3 +
34T > A. H, Example for absence of the variant ¢.809A > G (Q270R) in blood from one control patient. Note: Because the forward primers for
the fragments 2b and 3b contain the GC-clamp, the reverse primers have been used for sequencing. Hence, the sequences in D, E, G, and H

are reverse.

evidence that poly-N tracts may play important roles in RNA
splicing and processing (24, 25). Recently, it has become more
evident that development of a cancer can result from an
interplay of either a few “high penetrance” mutations in key
genes or from several, or many, sequence variants presently
of unknown significance. For example, overrepresentation of
a rare sequence variant of RET has been observed in patients
with sporadic medullary thyroid carcinoma (26). Similar ob-
servations have been made for polymorphic sequence vari-
ants of RET in patients with HSCR (27, 28), Cul2 in sporadic
pheochromocytomas (29), and PPARgamma in isolated gli-
oblastoma multiforme cases (30). However, the precise
mechanism to explain how the intronic sequence variant
could “protect” or at least lower the chance of developing
follicular thyroid carcinoma is unknown and open to spec-
ulation. Possibly, this intronic change affects a splice-donor
or splice-acceptor site or enhances a cryptic splice site, which
would subsequently lead to a different protein. Unfortu-
nately, complementary DNA was not available to test this
hypothesis. The absence of this polymorphism in patients
with follicular thyroid carcinoma may also support the hy-
pothesis that follicular thyroid adenomas and carcinomas do
not adhere to an adenoma-carcinoma sequence. Fine-struc-
ture deletion mapping of 10q22-24 also suggests that spo-
radic follicular thyroid adenomas and follicular thyroid car-
cinomas develop along distinct neoplastic pathways (11).
In conclusion, our observations suggest a role for MINPP1
in the tumorigenesis of malignant follicular thyroid carci-
noma. Although it may infrequently contribute to follicular

carcinogenesis via the traditional pathway of somatic high
penetrance, two-hit (31) mutations, this gene seems to harbor
a variant that could act as a common low penetrance sus-
ceptibility allele for follicular thyroid carcinoma. Further, the
DGGE and SSCP conditions reported here together with the
knowledge of the frequency of various sequence variants
may help in future mutation analyses of DNA from other
cancers with LOH in the 10923 region in which PTEN does
not seem to play a major role, such as head and neck carci-
nomas, lung cancer, and melanomas (32).
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